Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations
نویسندگان
چکیده
Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+) polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae) is mediated by hammerhead ribozymes, where and how cleavage of oligomeric (+) RNAs of nuclear viroids (family Pospiviroidae) occurs in vivo remains controversial. Previous in vitro data indicated that a hairpin capped by a GAAA tetraloop is the RNA motif directing cleavage and a loop E motif ligation. Here we have re-examined this question in vivo, taking advantage of earlier findings showing that dimeric viroid (+) RNAs of the family Pospiviroidae transgenically expressed in Arabidopsis thaliana are processed correctly. Using this methodology, we have mapped the processing site of three members of this family at equivalent positions of the hairpin I/double-stranded structure that the upper strand and flanking nucleotides of the central conserved region (CCR) can form. More specifically, from the effects of 16 mutations on Citrus exocortis viroid expressed transgenically in A. thaliana, we conclude that the substrate for in vivo cleavage is the conserved double-stranded structure, with hairpin I potentially facilitating the adoption of this structure, whereas ligation is determined by loop E and flanking nucleotides of the two CCR strands. These results have deep implications on the underlying mechanism of both processing reactions, which are most likely catalyzed by enzymes different from those generally assumed: cleavage by a member of the RNase III family, and ligation by an RNA ligase distinct from the only one characterized so far in plants, thus predicting the existence of at least a second plant RNA ligase.
منابع مشابه
A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability.
Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398-401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs a...
متن کاملViroids: unusual small pathogenic RNAs.
Viroids are small (about 300 nucleotides), single-stranded, circular, non-encapsidated pathogenic RNA molecules. They do not code for proteins and thus depend on plant host enzymes for their replication and other functions. They induce plant diseases by direct interaction with host factors but the mechanism of pathogenicity is still unknown. They can alter the expression of selected plant genes...
متن کاملNucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns.
Peanut stunt virus-associated RNA 5 (PARNA 5), the satellite of a plant cucumovirus, is a linear RNA of 393 nucleotides with a 5' cap and a 3' hydroxyl group. Determination of its nucleotide sequence has revealed two consecutive open reading frames that together extend most of its length. Sequences at the 5' and 3' ends are homologous with those of the satellite of the related cucumber mosaic v...
متن کاملRNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs.
The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cyc...
متن کاملDifferent rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Pathogens
دوره 3 شماره
صفحات -
تاریخ انتشار 2007